Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.339
Filtrar
1.
Igaku Butsuri ; 44(1): 1-7, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38583957

RESUMO

At the National Institutes for Quantum Science and Technology (QST), a multi-ion therapy using helium, carbon, oxygen, and neon ions has been studied for charged particle therapy with more optimal biological effects. To make multi-ion therapy clinically feasible, a new treatment system was developed to realize the changes of the ion species in each irradiation using the Heavy Ion Medial Accelerator in Chiba (HIMAC). Since radiation therapy is safety-critical, it is necessary to construct a safety system that includes multiple safety barriers in the new treatment system for multi-ion therapy and to perform a safety analysis for the prevention of serious accidents. In this study, we conducted a safety analysis using event tree analysis (ETA) for newly introduced processes in the treatment planning, accelerator, and irradiation system of the multi-ion therapy. ETA is an optimal method to verify multiple safety barriers that are essential for medical safety and to shorten the time for safety analysis by focusing only on the new processes. Through ETA, we clarified the types of malfunctions and human errors that may lead to serious accidents in the new system for multi-ion therapy, and verified whether safety barriers such as interlock systems and human check procedures are sufficient to prevent such malfunctions and human errors. As a result, 6 initial events which may lead to serious accidents were listed in the treatment planning process, 16 initial events were listed in the accelerator system, and 13 initial events were listed in the irradiation system. Among these 35 initial events, 5 cautionary initial events were identified that could lead to serious final events and they had a probability of occurrence higher than 10-4. Meanwhile, the others were all initial events that do not lead to serious accidents, or the initial events that can lead to serious accidents but were considered to have sufficient safety barriers. The safety analysis using ETA successfully identified the system malfunctions and the human errors that can lead to serious accidents, and the multiple safety barriers against them were systematically analyzed. It became clear that the multiple safety barriers were not sufficient for some initial events. We plan to improve the safety barriers for the five cautionary initial events before the start of the clinical trial. Based on these findings, we achieved our objective to conduct a safety analysis for a new treatment system for multi-ion therapy. The safety analysis procedure using ETA proposed by this study will be effective when new systems for radiotherapy are established at QST and other facilities in the future as well.


Assuntos
Radioterapia com Íons Pesados , Íons Pesados , Humanos , Radioterapia com Íons Pesados/métodos , Íons , Oxigênio/uso terapêutico , Carbono
2.
Radiat Oncol ; 19(1): 51, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649902

RESUMO

BACKGROUND: Radiation-induced liver damage (RILD) occasionally occurs following carbon-ion radiotherapy (CIRT) for liver tumors, such as hepatocellular carcinoma (HCC), in patients with impaired liver function disease. However, the associated risk factors remain unknown. The present study aimed to determine the risk factors of RILD after CIRT. METHODS: We retrospectively analyzed 108 patients with HCC treated with CIRT at the Osaka Heavy Ion Therapy Center between December 2018 and December 2022. RILD was defined as a worsening of two or more points in the Child-Pugh score within 12 months following CIRT. The median age of the patients was 76 years (range 47-95 years), and the median tumor diameter was 41 mm (range 5-160 mm). Based on the pretreatment liver function, 98 and 10 patients were categorized as Child-Pugh class A and B, respectively. We analyzed patients who received a radiation dose of 60 Gy (relative biological effectiveness [RBE]) in four fractions. The median follow-up period was 9.7 months (range 2.3-41.1 months), and RILD was observed in 11 patients (10.1%). RESULTS: Multivariate analysis showed that pretreatment Child-Pugh score B (p = 0.003, hazard ratio [HR] = 6.90) and normal liver volume spared from < 30 Gy RBE (VS30 < 739 cm3) (p = 0.009, HR = 5.22) were significant risk factors for RILD. The one-year cumulative incidences of RILD stratified by Child-Pugh class A or B and VS30 < 739 cm3 or ≥ 739 cm3 were 10.3% or 51.8% and 39.6% or 9.2%, respectively. CONCLUSION: In conclusion, the pretreatment Child-Pugh score and VS30 of the liver are significant risk factors for RILD following CIRT for HCC.


Assuntos
Carcinoma Hepatocelular , Radioterapia com Íons Pesados , Neoplasias Hepáticas , Lesões por Radiação , Humanos , Neoplasias Hepáticas/radioterapia , Carcinoma Hepatocelular/radioterapia , Radioterapia com Íons Pesados/efeitos adversos , Idoso , Masculino , Pessoa de Meia-Idade , Feminino , Estudos Retrospectivos , Idoso de 80 Anos ou mais , Prognóstico , Lesões por Radiação/etiologia , Lesões por Radiação/patologia , Fatores de Risco , Fígado/efeitos da radiação , Fígado/patologia
3.
Anticancer Res ; 44(4): 1773-1780, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537982

RESUMO

BACKGROUND/AIM: The aging population is expected to increase the occurrences of bone sarcoma (BS) and soft tissue sarcoma (STS). Carbon ion radiotherapy (CIRT) is reported to be effective for BS and several STSs. However, the effect of CIRT on clinical outcomes, functional prognoses, and quality of life (QOL) in older patients who underwent CIRT has not been reported. Therefore, we aimed to evaluate the effect of CIRT on clinical outcomes, functional prognoses and QOL in older patients with BS or STS. PATIENTS AND METHODS: This retrospective cohort study included 235 patients aged >70 years with BS or STS who underwent CIRT. Overall survival (OS), cancer-specific survival (CSS), and local control (LC) were evaluated in chordoma and non-chordoma patients. Furthermore, factors associated with post-CIRT Toronto Extremity Salvage Score (TESS) and EuroQoL 5-dimension 5-level (EQ-5D-5L) index were assessed. RESULTS: The overall 5-year LC, OS, and CSS rates were 81%, 62%, and 76%, respectively. In the chordoma and non-chordoma groups, the 5-year LC, OS, and CSS rates were 84%, 72%, and 87%; and 77%, 47%, and 60%, respectively. The mean post-CIRT TESS and EQ-5D-5L index were 75% and 0.71, respectively. The TESSs and EQ-5D-5L indices tended to be better among males, younger patients (<76 years old), patients with small tumor volumes, and patients with chordoma. CONCLUSION: CIRT is effective for older patients with BS, especially with chordoma, and STS with good LC and survival rates. Furthermore, post-treatment limb function and QOL were comparable with those of the other treatments and age groups.


Assuntos
Neoplasias Ósseas , Cordoma , Radioterapia com Íons Pesados , Osteossarcoma , Sarcoma , Masculino , Humanos , Idoso , Qualidade de Vida , Estudos Retrospectivos , Cordoma/radioterapia , Sarcoma/patologia , Radioterapia com Íons Pesados/efeitos adversos , Radioterapia com Íons Pesados/métodos , Osteossarcoma/etiologia , Neoplasias Ósseas/patologia , Carbono
4.
Radiat Oncol ; 19(1): 42, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553768

RESUMO

BACKGROUND: Solitary fibrous tumors (SFT) of the central nervous system are rare and treatment options are not well established. The aim of this study was to evaluate the clinical outcomes of radiotherapy (RT) and re-radiotherapy (re-RT) for de novo intracranial SFT and recurrent intracranial SFT. METHODS: This retrospective study analyzed efficacy and toxicity of different RT modalities in patients who received radiotherapy (RT) for intracranial SFT at Heidelberg University Hospital between 2000 and 2020 following initial surgery after de novo diagnosis ("primary group"). We further analyzed the patients of this cohort who suffered from tumor recurrence and received re-RT at our institution ("re-irradiation (re-RT) group"). Median follow-up period was 54.0 months (0-282) in the primary group and 20.5 months (0-72) in the re-RT group. RT modalities included 3D-conformal RT (3D-CRT), intensity-modulated RT (IMRT), stereotactic radiosurgery (SRS), proton RT, and carbon-ion RT (C12-RT). Response rates were analyzed according to RECIST 1.1 criteria. RESULTS: While the primary group consisted of 34 patients (f: 16; m:18), the re-RT group included 12 patients (f: 9; m: 3). Overall response rate (ORR) for the primary group was 38.3% (N = 11), with 32.4% (N = 11) complete remissions (CR) and 5.9% (N = 2) partial remissions (PR). Stable disease (SD) was confirmed in 5.9% (N = 2), while 41.2% (N = 14) experienced progressive disease (PD). 14% (N = 5) were lost to follow up. The re-RT group had 25.0% CR and 17.0% PR with 58.0% PD. The 1-, 3-, and 5-year progression-free survival rates were 100%, 96%, and 86%, respectively, in the primary group, and 81%, 14%, and 14%, respectively, in the re-RT group. Particle irradiation (N = 11) was associated with a lower likelihood of developing a recurrence in the primary setting than photon therapy (N = 18) (OR = 0.038; p = 0.002), as well as doses ≥ 60.0 Gy (N = 15) versus < 60.0 Gy (N = 14) (OR = 0.145; p = 0.027). Risk for tumor recurrence was higher for women than for men (OR = 8.07; p = 0.014) with men having a median PFS of 136.3 months, compared to women with 66.2 months. CONCLUSION: The data suggests RT as an effective treatment option for intracranial SFT, with high LPFS and PFS rates. Radiation doses ≥ 60 Gy could be associated with lower tumor recurrence. Particle therapy may be associated with a lower risk of recurrence in the primary setting, likely due to the feasibility of higher RT-dose application.


Assuntos
Radioterapia com Íons Pesados , Hemangiopericitoma , Tumores Fibrosos Solitários , Masculino , Humanos , Feminino , Prótons , Recidiva Local de Neoplasia/radioterapia , Estudos Retrospectivos , Hemangiopericitoma/radioterapia , Hemangiopericitoma/patologia , Hemangiopericitoma/cirurgia , Tumores Fibrosos Solitários/radioterapia , Tumores Fibrosos Solitários/patologia , Radioterapia com Íons Pesados/efeitos adversos
5.
Phys Med ; 120: 103325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493583

RESUMO

PURPOSE: The present study aimed to develop a porous structure with plug-ins (PSP) to broaden the Bragg peak width (BPW, defined as the distance in water between the proximal and distal 80% dose) of the carbon ion beam while maintaining a sharp distal falloff width (DFW, defined as the distance along the beam axis where the dose in water reduces from 80% to 20%). METHODS: The binary voxel models of porous structure (PS) and PSP were established in the Monte Carlo code FLUKA and the corresponding physical models were manufactured by 3D printing. Both experiment and simulation were performed for evaluating the modulation capacity of PS and PSP. BPWs and DFWs derived from each integral depth dose curves were compared. Fluence homogeneity of 430 MeV/u carbon-ion beam passing through the PSP was recorded by analyzing radiochromic films at six different locations downstream the PSP in the experiment. Additionally, by changing the beam spot size and incident position on the PSP, totally 48 different carbon-ion beams were simulated and corresponding deviations of beam metrics were evaluated to test the modulating stability of PSP. RESULTS: According to the measurement data, the use of PSP resulted in an average increase of 0.63 mm in BPW and a decrease of 0.74 mm in DFW compared to PS. The 2D radiation field inhomogeneities were lower than 3 % when the beam passing through a ≥ 10 cm PMMA medium. Furthermore, employing a spot size of ≥ 6 mm ensures that beam metric deviations, including BPW, DFW, and range, remain within a deviation of 0.1 mm across various incident positions. CONCLUSION: The developed PSP demonstrated its capability to effectively broaden the BPW of carbon ion beams while maintaining a sharp DFW comparing to PS. The superior performance of PSP, indicates its potential for clinical use in the future.


Assuntos
Radioterapia com Íons Pesados , Terapia com Prótons , Método de Monte Carlo , Porosidade , Radioterapia com Íons Pesados/métodos , Carbono , Água , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Terapia com Prótons/métodos
6.
Semin Radiat Oncol ; 34(2): 207-217, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508785

RESUMO

The unique physical and biological characteristics of proton and carbon ions allow for improved sparing of normal tissues, decreased integral dose to the body, and increased biological effect through high linear energy transfer. These properties are particularly useful for sarcomas given their histology, wide array of locations, and age of diagnosis. This review summarizes the literature and describes the clinical situations in which these heavy particles have advantages for treating sarcomas.


Assuntos
Radioterapia com Íons Pesados , Terapia com Prótons , Sarcoma , Humanos , Prótons , Sarcoma/radioterapia
8.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474078

RESUMO

Carbon ion beams have the unique property of higher linear energy transfer, which causes clustered damage of DNA, impacting the cell repair system. This sometimes triggers apoptosis and the release in the cytoplasm of damaged DNA, leading to type I interferon (IFN) secretion via the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes pathway. Dendritic cells phagocytize dead cancer cells and damaged DNA derived from injured cancer cells, which together activate dendritic cells to present cancer-derived antigens to antigen-specific T cells in the lymph nodes. Thus, carbon ion radiation therapy (CIRT) activates anti-cancer immunity. However, cancer is protected by the tumor microenvironment (TME), which consists of pro-cancerous immune cells, such as regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. The TME is too robust to be destroyed by the CIRT-mediated anti-cancer immunity. Various modalities targeting regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages have been developed. Preclinical studies have shown that CIRT-mediated anti-cancer immunity exerts its effects in the presence of these modalities. In this review article, we provide an overview of CIRT-mediated anti-cancer immunity, with a particular focus on recently identified means of targeting the TME.


Assuntos
Radioterapia com Íons Pesados , Células Supressoras Mieloides , Neoplasias , Humanos , Neoplasias/patologia , Linfócitos T Reguladores , DNA , Microambiente Tumoral
9.
Oral Oncol ; 151: 106683, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387259

RESUMO

BACKGROUND: Although carbon ion radiation therapy (CIRT) substantially improves the overall survival (OS) of patients with LR-NPC, approximately 40% of the patients may develop local recurrence. The purpose of study is to assess the value of tumor volume (TV) as a predictive tool to guide individualized CIRT. METHODS: Consecutive patients with LR-NPC treated using CIRT at Shanghai Proton and Heavy Ion Center between April 2015 and May 2019 were included. TV before CIRT was delineated and calculated. The generalized additive Cox model was used to examine the relationship between TV and OS and local progression-free survival (LPFS). A cutoff value of tumor volume was identified to best discriminate patients with different 2-year OS rates, using receiver operating characteristic (ROC) analysis. RESULTS: A total of 157 patients were enrolled. The median tumor volume was 22.49 (2.52-90.13) ml. In the univariable analyses, tumor volume was significantly associated with OS (p < 0.001) and LPFS (p = 0.01). The relationships with OS (p = 0.009) and LPFS (p = 0.020) remained significant in multivariable analyses. Using ROC analysis, a TV of 26.69 ml was identified to predict the 2-year OS rate. To facilitate potential clinical use, 25 ml was designated as the final cutoff value. The 2-year OS and LPFS rates were 88.6 % vs 62.3 %, and 54.7 % vs 35.5 %, for patients with a TV ≤ 25 ml and > 25 ml, respectively. CONCLUSION: Tumor volume could predict the OS and LPFS of patients. We propose that tumor volume should be considered in the risk stratification and CIRT-based treatment for patients with LR-NPC.


Assuntos
Radioterapia com Íons Pesados , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/radioterapia , Carga Tumoral , China , Radioterapia com Íons Pesados/efeitos adversos , Estudos Retrospectivos , Prognóstico
10.
Radiother Oncol ; 194: 110180, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403023

RESUMO

This feasibility study confirmed the initial safety and efficacy of a novel carbon-ion radiotherapy (CIRT) using linear energy transfer (LET) painting for head and neck cancer. This study is the first step toward establishing CIRT with LET painting in clinical practice and making it a standard practice in the future.


Assuntos
Estudos de Viabilidade , Neoplasias de Cabeça e Pescoço , Radioterapia com Íons Pesados , Transferência Linear de Energia , Dosagem Radioterapêutica , Humanos , Neoplasias de Cabeça e Pescoço/radioterapia , Radioterapia com Íons Pesados/métodos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade
11.
Cancer Med ; 13(3): e7023, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38396380

RESUMO

BACKGROUND: This study aimed to compare the outcomes of proton beam therapy (PBT) and carbon ion radiotherapy (CIRT) by a systematic review and meta-analysis of the existing clinical evidence. METHODS: A systematic literature search was performed to identify studies comparing the clinical outcomes of PBT and CIRT. The included studies were required to report oncological outcomes (local control [LC], progression-free survival [PFS], or overall survival [OS]) or adverse events. RESULTS: Eighteen articles comprising 1857 patients (947 treated with PBT and 910 treated with CIRT) were included in the analysis. The pooled analysis conducted for the overall population yielded average hazard ratios of 0.690 (95% confidence interval (CI), 0.493-0.967, p = 0.031) for LC, 0.952 (95% CI, 0.604-1.500, p = 0.590) for PFS, and 1.183 (0.872-1.607, p = 0.281) for OS with reference to CIRT. The subgroup analyses included patients treated in the head and neck, areas other than the head and neck, and patients with chordomas and chondrosarcomas. These analyses revealed no significant differences in most outcomes, except for LC in the subgroup of patients treated in areas other than the head and neck. Adverse event rates were comparable in both groups, with an odds ratio (OR) of 1.097 (95% CI, 0.744-1.616, p = 0.641). Meta-regression analysis for possible heterogeneity did not demonstrate a significant association between treatment outcomes and the ratio of biologically effective doses between modalities. CONCLUSION: This study highlighted the comparability of PBT and CIRT in terms of oncological outcomes and adverse events.


Assuntos
Radioterapia com Íons Pesados , Terapia com Prótons , Humanos , Terapia com Prótons/efeitos adversos , Radioterapia com Íons Pesados/efeitos adversos , Resultado do Tratamento , Intervalo Livre de Progressão
12.
Cancer Med ; 13(2): e6950, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38379323

RESUMO

BACKGROUND AND PURPOSE: As an advanced radiotherapy technique, carbon ion radiotherapy has demonstrated good efficacy and low toxicity for prostate cancer patients, but the radiobiological mechanism of killing tumor cells has not been fully elucidated. This study aims to explore the antitumor effects of carbon ion irradiation (CIR) through investigating the immune response induced by CIR in prostate cancer-bearing mice and the underlying molecular mechanism. MATERIALS AND METHODS: We established subcutaneous transplantation tumor models of prostate cancer to evaluate the tumor inhibition effect of CIR. Investigation of immunophenotype alterations were assessed by flow cytometry. Immunofluorescence, western blot, and real-time quantitative PCR was employed to analyze the activation of cGAS-STING pathway. RESULTS: CIR showed more powerful tumor growth control than photon irradiation in immunocompetent syngeneic C57BL/6 mice. CIR exerts antitumor effect by triggering immune response, characterized by increased CD4+ T cells and macrophages in tumor, enhanced CD8+ T cells and T effector memory cells in spleen, improved IFN-γ production of CD8+ tumor-infiltrating lymphocytes, and reduced exhausted T cells in tumor and spleen. Additionally, production of cytoplasmic double-stranded DNA, protein levels of p-TBK1 and p-IRF3 in the cGAS-STING pathway, and gene expression levels of downstream interferon-stimulated genes were significantly increased after CIR in a dose-dependent manner. Treatment of RM1 tumor-bearing mice with the STING inhibitor C-176 impaired the antitumor effect of CIR. CONCLUSION: The excellent antitumor activity of CIR in immunocompetent prostate cancer-bearing C57BL/6 mice may be attributed to stronger induction of antitumor immune response and higher activation of cGAS-STING pathway.


Assuntos
Radioterapia com Íons Pesados , Neoplasias da Próstata , Humanos , Masculino , Camundongos , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Linfócitos T CD8-Positivos/metabolismo , Camundongos Endogâmicos C57BL , Nucleotidiltransferases/genética , Imunidade , Neoplasias da Próstata/genética , Neoplasias da Próstata/radioterapia , Carbono
13.
Appl Radiat Isot ; 206: 111233, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340532

RESUMO

Carbon ions have unique physical and biological properties that allow for precise targeting of tumors while minimizing damage to surrounding healthy tissues. The emitted neutrons dominate the radiation field in the treatment room and pose challenges for radiological shielding. Concrete is extensively utilized in the construction of radiotherapy facilities due to its good shielding characteristics, and it can be easily poured into the desired shapes and thickness. The difference in composition of concrete affects the characteristics of neutron attenuation and activation performance. Therefore, the purpose of this study is to clarify the shielding properties and activation performances of four types of concrete for carbon ion therapy facilities. The Monte Carlo method is used to analyze the neutron spectra from thick targets upon carbon ion bombardment. Furthermore, the deep attenuation efficiency of the secondary neutron in different compositions of concrete is discussed. The shielding design is developed to ensure compliance with the prescribed dose limit outside the shielding during operation. Finally, the induced radioactivity in concrete is estimated for both short-term and long-term operation. The produced radionuclides inventories and depth profiling are determined. This study reveals the shielding and radioactivity issue of carbon ion therapy facilities and is expected to aid in the design or construction of similar facilities.


Assuntos
Radioterapia com Íons Pesados , Nêutrons , Íons , Radioisótopos , Carbono , Método de Monte Carlo , Doses de Radiação
14.
Cancer Med ; 13(3): e6742, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38205914

RESUMO

PURPOSE: Management of locoregionally recurrent nasopharyngeal carcinoma (LR NPC) is difficult. Although carbon-ion radiation therapy (CIRT) could substantially improve the overall survival (OS) of those patients, around 40% of the patients may still develop local failure. Further improvement of the disease control is necessary. Immunotherapy, such as immune checkpoint inhibitors (ICIs) becomes a promising antitumor treatment. The role of ICIs was proved in head and neck cancers including recurrent/metastatic NPC. Preclinical studies indicated potential synergistic effects between radiation therapy and ICIs. Therefore, we conduct a randomized phase 2 trial to evaluate the efficacy and safety of camrelizumab, an anti-PD-1 monoclonal antibody, along with CIRT in patients with LR NPC. METHODS: Patients will be randomly assigned at 1:1 to receive either standard CIRT with 63 Gy (relatively biological effectiveness, [RBE]) in 21 fractions, or standard CIRT plus concurrent camrelizumab. Camrelizumab will be administered intravenously with a dose of 200 mg, every 2 week, for a maximum of 1 year. We estimate addition of camrelizumab will improve the 2-year progression-free survival (PFS) from 45% to 60%. A total of 146 patients (with a 5% lost to follow-up rate) is required to yield a type I error of 0.2, and a power of 0.8. RESULTS AND CONCLUSION: The results of the trial may shed insights on the combined therapy with ICIs and CIRT.


Assuntos
Anticorpos Monoclonais Humanizados , Radioterapia com Íons Pesados , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/radioterapia , Carbono , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto
15.
Phys Med ; 118: 103209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38281410

RESUMO

In-beam PET (Positron Emission Tomography) is one of the most precise techniques for in-vivo range monitoring in hadron therapy. Our objective was to demonstrate the feasibility of a short irradiation run for range verification before a carbon-ion treatment. To do so a PMMA target was irradiated with a 220 MeV/u carbon-ion beam and annihilation coincidences from short-lived positron emitters were acquired after irradiations lasting 0.6 s. The experiments were performed at the synchrotron-based facility CNAO (Italian National Center of Oncological Hadrontherapy) by using the INSIDE in-beam PET detector. The results show that, with 3·107 carbon ions, the reconstructed positron emitting nuclei distribution is in good agreement with the predictions of a detailed FLUKA Monte Carlo study. Moreover, the radio-nuclei production is sufficiently abundant to determine the average ion beam range with a σ of 1 mm with a 6 s measurement of the activity distribution. Since the data were acquired when the beam was off, the proposed rapid calibration method can be applied to hadron beams extracted from accelerators with very different time structures.


Assuntos
Elétrons , Radioterapia com Íons Pesados , Tomografia por Emissão de Pósitrons/métodos , Carbono/uso terapêutico , Síncrotrons , Método de Monte Carlo
16.
Tumori ; 110(2): 132-138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38183176

RESUMO

INTRODUCTION: Preserving the endocrine and reproductive function in young female cancer patients undergoing pelvic radiation is a significant challenge. While the photon beam radiation's adverse effects on the uterus and ovaries are well established, the impact of pelvic carbon ion radiotherapy on women's reproductive function is largely unexplored. Strategies such as oocyte cryopreservation and ovarian transposition are commonly recommended for safeguarding future fertility. METHODS: This study presents a pioneering case of successful pregnancy after carbon ion radiotherapy for locally advanced sacral chondrosarcoma. RESULTS: A multidisciplinary approach facilitated the displacement of ovaries and uterus before carbon ion radiotherapy, resulting in the preservation of endocrine and reproductive function. CONCLUSION: The patient achieved optimal oncological response and delivered a healthy infant following the completion of cancer treatment.


Assuntos
Preservação da Fertilidade , Radioterapia com Íons Pesados , Feminino , Humanos , Gravidez , Criopreservação/métodos , Fertilidade/fisiologia , Preservação da Fertilidade/métodos , Radioterapia com Íons Pesados/efeitos adversos , Ovário , Adulto
17.
Asian J Endosc Surg ; 17(1): e13279, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38212264

RESUMO

PURPOSE: This study presents the surgical and oncological outcomes of salvage robot-assisted radical prostatectomy (RARP) after carbon ion radiotherapy at a single institution. METHODS: Patients who underwent salvage RARP for local recurrence after carbon ion radiotherapy at Kyushu University Hospital between 2020 and 2023 were included. A single surgeon performed salvage RARP with extended pelvic lymph node dissection. Clinicopathological characteristics and perioperative and postoperative outcomes were prospectively collected and electronically recorded. RESULTS: Ten cases were included. The preoperative clinical T-stage was T2, except for one case with T3a. The median console time was 171 min (range, 135-226 min). No severe perioperative or postoperative complications were noted. The pathological T-stage was T2, T3a, and T3b in four, four, and two cases, respectively. Biochemical recurrence was observed in one patient at 31.2 months after surgery. For patients with more than 1 year of follow-up, urinary continence recovery with ≤1 pad was achieved in two cases within 1 year, whereas four cases did not recover urinary continence within 1 year. CONCLUSIONS: This case series demonstrated the feasibility of salvage RARP after carbon ion radiotherapy. Although the urinary continence recovery was modest, short-term disease control was favorable.


Assuntos
Radioterapia com Íons Pesados , Neoplasias da Próstata , Procedimentos Cirúrgicos Robóticos , Robótica , Incontinência Urinária , Masculino , Humanos , Próstata/patologia , Incontinência Urinária/etiologia , Incontinência Urinária/cirurgia , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/cirurgia , Resultado do Tratamento , Procedimentos Cirúrgicos Robóticos/efeitos adversos , Prostatectomia/efeitos adversos , Radioterapia com Íons Pesados/efeitos adversos
18.
Sci Rep ; 14(1): 418, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172585

RESUMO

Boron Neutron Capture Therapy (BNCT) is a radiotherapy technique based on the enrichment of tumour cells with suitable 10-boron concentration and on subsequent neutron irradiation. Low-energy neutron irradiation produces a localized deposition of radiation dose caused by boron neutron capture reactions. Boron is vehiculated into tumour cells via proper borated formulations, able to accumulate in the malignancy more than in normal tissues. The neutron capture releases two high-LET charged particles (i.e., an alpha particle and a lithium ion), losing their energy in a distance comparable to the average dimension of one cell. Thus BNCT is selective at the cell level and characterized by high biological effectiveness. As the radiation field is due to the interaction of neutrons with the components of biological tissues and with boron, the dosimetry requires a formalism to express the absorbed dose into photon-equivalent units. This work analyzes a clinical case of an adenoid cystic carcinoma treated with carbon-ion radiotherapy (CIRT), located close to optic nerve and deep-seated as a practical example of how to apply the formalism of BNCT photon isoeffective dose and how to evaluate the BNCT dose distribution against CIRT. The example allows presenting different dosimetrical and radiobiological quantities and drawing conclusions on the potential of BNCT stemming on the clinical result of the CIRT. The patient received CIRT with a dose constraint on the optic nerve, affecting the peripheral part of the Planning Target Volume (PTV). After the treatment, the tumour recurred in this low-dose region. BNCT was simulated for the primary tumour, with the goal to calculate the dose distribution in isoeffective units and a Tumour Control Probability (TCP) to be compared with the one of the original treatment. BNCT was then evaluated for the recurrence in the underdosed region which was not optimally covered by charged particles due to the proximity of the optic nerve. Finally, a combined treatment consisting in BNCT and carbon ion therapy was considered to show the consistency and the potential of the model. For the primary tumour, the photon isoeffective dose distribution due to BNCT was evaluated and the resulted TCP was higher than that obtained for the CIRT. The formalism produced values that are consistent with those of carbon-ion. For the recurrence, BNCT dosimetry produces a similar TCP than that of primary tumour. A combined treatment was finally simulated, showing a TCP comparable to the BNCT-alone with overall dosimetric advantage in the most peripheral parts of the treatment volume. Isoeffective dose formalism is a robust tool to analyze BNCT dosimetry and to compare it with the photon-equivalent dose calculated for carbon-ion treatment. This study introduces for the first time the possibility to combine the dosimetry obtained by two different treatment modalities, showing the potential of exploiting the cellular targeting of BNCT combined with the precision of charged particles in delivering an homogeneous dose distribution in deep-seated tumours.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias de Cabeça e Pescoço , Radioterapia com Íons Pesados , Humanos , Terapia por Captura de Nêutron de Boro/métodos , Boro , Carbono , Nêutrons
19.
Biochem Biophys Res Commun ; 696: 149500, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38219488

RESUMO

Carbon ion radiotherapy (CIRT) is a heavy ion charge particle therapy with 29 years of prominent use. Despite advantages like high relative biological effectiveness (RBE), improved quality of life, and reduced treatment time, challenges persist, especially regarding heavy nuclear fragments. Our research addresses these challenges in horizontal irradiation, aiming to comprehend Monoenergetic and Spread-Out Bragg peak (SOBP) carbon ion beam trajectories using cell survival analysis and visualizing biological effects through DNA damage (γ-H2AX). This reveals repair-related protein foci near the Bragg peak. CR-39, a plastic nuclear track detector, was explored to understand high-linear energy transfer (LET) tracks and radiation quality near the Bragg peak. Findings unveil high-LET DNA damage signatures through aligned γ-H2AX foci, correlating with LET values in SOBP. CR-39 visualized high-LET particle exposure, indicating comet-type etch-pits at the Bragg peak and suggesting carbon ion fragmentation. Unexpectedly, dot-type etch-pits in irradiated and post-Bragg peak regions indicated high-LET neutron production. This investigation highlights the intricate interplay of carbon ion beams, stressing the importance of understanding LET variations, DNA damage patterns, and undesired secondary exposure.


Assuntos
Radioterapia com Íons Pesados , Transferência Linear de Energia , Polietilenoglicóis , Qualidade de Vida , Íons , Carbono , Dano ao DNA , Morte Celular
20.
Med Phys ; 51(1): 556-565, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37727137

RESUMO

BACKGROUND: Large tumor size has been reported as a predicting factor for inferior clinical outcome in carbon ion radiotherapy (CIRT). Besides the clinical factors accompanied with such tumors, larger tumors receive typically more low linear energy transfer (LET) contributions than small ones which may be the underlying physical cause. Although dose averaged LET is often used as a single parameter descriptor to quantify the beam quality, there is no evidence that this parameter is the optimal clinical predictor for the complex mixed radiation fields in CIRT. PURPOSE: Purpose of this study was to investigate on a novel dosimetric quantity, namely high-LET-dose ( D > L thr $\textrm {D}_{>\textrm {L}_{\textrm {thr}}}$ , the physical dose filtered based on an LET threshold) as a single parameter estimator to differentiate between carbon ion treatment plans (cTP) with a small and large tumor volume. METHODS: Ten cTPs with a planning target volume, PTV ≥ 500 cm 3 $\mathrm{PTV}\ge {500}\,{{\rm cm}^{3}}$ (large) and nine with a PTV < 500 cm 3 $\mathrm{PTV}<{500}\,{{\rm cm}^{3}}$ (small) were selected for this study. To find a reasonable LET threshold ( L thr $\textrm {L}_{\textrm {thr}}$ ) that results in a significant difference in terms of D > L thr $\textrm {D}_{>\textrm {L}_{\textrm {thr}}}$ , the voxel based normalized high-LET-dose ( D ̂ > L thr $\hat{\textrm {D}}_{>\textrm {L}_{\textrm {thr}}}$ ) distribution in the clinical target volume (CTV) was studied on a subset (12 out of 19 cTPs) for 18 LET thresholds, using standard distribution descriptors (mean, variance and skewness). The classical dose volume histogram concept was used to evaluate the D > L thr $\textrm {D}_{>\textrm {L}_{\textrm {thr}}}$ and D ̂ > L thr $\hat{\textrm {D}}_{>\textrm {L}_{\textrm {thr}}}$ distributions within the target of all 19 cTPs at the before determined L thr $\textrm {L}_{\textrm {thr}}$ . Statistical significance of the difference between the two groups in terms of mean D > L thr $\textrm {D}_{>\textrm {L}_{\textrm {thr}}}$ and D ̂ > L thr $\hat{\textrm {D}}_{>\textrm {L}_{\textrm {thr}}}$ volume histogram parameters was evaluated by means of (two-sided) t-test or Mann-Whitney-U-test. In addition, the minimum target coverage at the above determined L thr $\textrm {L}_{\textrm {thr}}$ was compared and validated against three other thresholds to verify its potential in differentiation between small and large volume tumors. RESULTS: An L thr $\textrm {L}_{\textrm {thr}}$ of approximately 30 keV / µ m ${30}\,{\rm keV/}\umu {\rm m}$ was found to be a reasonable threshold to classify the two groups. At this threshold, the D > L thr $\textrm {D}_{>\textrm {L}_{\textrm {thr}}}$ and D ̂ > L thr $\hat{\textrm {D}}_{>\textrm {L}_{\textrm {thr}}}$ were significantly larger ( p < 0.05 $p<0.05$ ) in small CTVs. For the small tumor group, the near-minimum and median D > L thr $\textrm {D}_{>\textrm {L}_{\textrm {thr}}}$ (and D ̂ > L thr $\hat{\textrm {D}}_{>\textrm {L}_{\textrm {thr}}}$ ) in the CTV were in average 9.3 ± 1.5 Gy $9.3\pm {1.5}\,{\rm Gy}$ (0.31 ± 0.08) and 13.6 ± 1.6 Gy $13.6\pm {1.6}\,{\rm Gy}$ (0.46 ± 0.06), respectively. For the large tumors, these parameters were 6.6 ± 0.2 Gy $6.6\pm {0.2}\,{\rm Gy}$ (0.20 ± 0.01) and 8.6 ± 0.4 Gy $8.6\pm {0.4}\,{\rm Gy}$ (0.28 ± 0.02). The difference between the two groups in terms of mean near-minimum and median D > L thr $\textrm {D}_{>\textrm {L}_{\textrm {thr}}}$ ( D ̂ > L thr $\hat{\textrm {D}}_{>\textrm {L}_{\textrm {thr}}}$ ) was 2.7 Gy (11%) and 5.0 Gy (18%), respectively. CONCLUSIONS: The feasibility of high-LET-dose based evaluation was shown in this study where a lower D > L thr $\textrm {D}_{>\textrm {L}_{\textrm {thr}}}$ was found in cTPs with a large tumor size. Further investigation is needed to draw clinical conclusions. The proposed methodology in this work can be utilized for future high-LET-dose based studies.


Assuntos
Radioterapia com Íons Pesados , Neoplasias , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Transferência Linear de Energia , Radioterapia de Intensidade Modulada/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...